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초 록

본 논문에서는 자동적으로 가창 표현을 한 목소리 신호에서 다른 목소리 신호로 이식하는 오디오 신호처리

시스템을 제안한다. 가창자의 능력에 따라 같은 노래를 부르더라도 음의 시작점, 음정, 에너지와 같은 부

분에서 큰 변화가 발생할 수 있다. 이 시스템은 이러한 가창자의 고유의 음색을 제외한 음악적인 표현들을

추출 및 적용하는 것에 중점을 두었다. 이러한 가창 표현 이식 행위는 노래 부르기를 어려워하는 사람들의

음악 활동에 도움을 주고, 새로운 가창 표현을 학습하려는 사람들에게 보다 직관적인 가이드라인을 제공해

줄 수 있다. 이 시스템은 차례대로 음의 타이밍 정보와 음정, 그리고 에너지를 일치시키는 방식으로 표현을

이식한다. 본 연구에서는 이를 위해 음의 타이밍 정보를 일치시키는 알고리즘, 음정과 에너지 정보를 일치

시키는 알고리즘, 그리고 해당 알고리즘의 성능을 최대한 개선시키고 최적화하는 방법을 제안한다. 그리고

이러한 세부 방법들을 기반으로 가창 표현 이식 시스템을 제안하여 가창 표현 수정에 대한 새로운 접근법을

제시하려고 한다.

핵 심 낱 말 가창, 표현 이식, 시간축 변환, 동적 시간 워핑

Abstract

This paper presents an audio signal processing system that automatically transfers singing expressions

from one voice to another. Depending on singers’ skills, a song is sung with great variations in terms of

note onset time, pitch and energy. The system focused on extracting and transferring musical expressions,

excluding the timbre of singers. This singing expression transfer system can provide more intuitive

guidance to those who want to learn new vocabulary expressions and help the music activities of those

who have difficulty in singing. The system transfers expressions in the order of tempo, pitch, and energy.

In this study, we propose an algorithm to align the tempo of the note, a method to match pitch and

energy information, and a method to optimize the performance of these processes. Based on these

methods, we propose a new singing expression transfer system and propose a new approach to singing

voice modification.

Keywords Singing voice, expression transfer, time-scale modification, dynamic time warping
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Chapter 1. Introduction

Singing is a popular musical activity that many people enjoy, for example, in the form of karaoke.

Depending on singing skills, a song can be rendered into touching music or just noisy sounds. What if

my bad singing can be transformed and so sound like a professional? In this research, we present a vocal

processing system that automatically transfers singing expressions from one voice to another.

Commercial vocal correction tools such as Autotune1, VariAudio2 and Melodyne3 mainly focus on

modifying pitch of singing voice. Some of them are capable of manipulating note onset timing or other

musical expressions by editing transcribed MIDI notes. Although they provide automated controls, the

correction process is often tedious and repetitive until satisfactory results are achieved. There are some

previous work that attempted to minimize the manual effort in modifying musical expressions. Bryan et.

al proposed a variable-rate time-stretching system that allows users to modify the stretching ratio easily

[1]. Given a user-guided stiffness curve, the system automatically computed time-dependent stretch

rate via a constrained optimization program. Roebel et. al proposed an algorithm to remove vibrato

expressions [2]. They operated entirely based on spectral envelope smoothing without manipulation of

individual partial parameters. While these methods provide more convenience to process singing voice

signals, they still require user guide or parametric control to some extent.

figure 1.1: Antares Autotune 8 Graphical Mode.5In the existing vocal correction tools, users should

manipulate features in manual to modify singing voice signals.

In this thesis, we propose an audio signal processing system that modifies musical expressions of

singing voice in a fully automatic manner with a target singing voice as a control guide. Assuming

that both source and target voices sing the same song, the system transfers three musical expressions

1http://www.antarestech.com/products/index.php
2https://www.steinberg.net/en/products/cubase/cubase_pro.html
3http://www.celemony.com/en/melodyne/what-is-melodyne
5http://www.antarestech.com/products/detail.php?product=Auto-Tune_8_66
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from target to source: tempo, pitch, and dynamics. First, it temporally synchronizes two singing voices

using dynamic time warping on vibrato-suppressed mel-scale spectrum and a formant feature. Second, it

extracts pitch ratio between the two voices and modifies the pitch of source voice using pitch-synchronous

overlap-add algorithm (PSOLA). Finally, it modifies dynamics of the source voice by extracting the ratio

of amplitude envelops. In the series of process, the system does not use any user guide or additional

information such as lyrics and music scores beside a target voice. Since the system modifies only technical

elements in singing and preserves the timbre of source voice, it will be useful for not only sound production

but also vocal training.

2



Chapter 2. Research Background

2.1 Time-Scale Modification Algorithm

Time-scale modification (TSM) algorithm is the process that manipulates the length of the audio

signal. [3] The ideal TSM algorithm should modify only the tempo of the signal, and preserve any other

properties such as pitch and timbre. This TSM method is commonly used in sound producing area to

synchronize the duration of audio sources to other media source, or change the pitch of audio sources

with resampling without changing the duration of audio sources.

There are two main issues in TSM procedures. The first one is degradation of percussive transients.

[4] While modifying audio sources with TSM algorithms, percussive transients often disappeared or are

doubled. The other problem is phase discontinuity in mixed audio sources. Because the phase of each

sources are different, phases in the mixed sources are discontinued with overlap-add based TSM method.

The key idea of TSM algorithm is decomposing the audio signal in the short length with the analysis

hop size Ha, modifying the decomposed audio frames and recomposing those modified frames with the

synthesis hop size Hs. The mth decomposed frame xm is derived as:

xm[n] =

x[n+mHa], if −N/2 ≤ n < N/2,

0, otherwise.
(2.1)

where N is the size of the frame. While Ha < Hs, the audio signal will be stretched after the procedure,

and will be compressed if Ha > Hs.

In this section, we introduce some frequently used TSM algorithms and advantages and limitations

of each methods.

2.1.1 Overlap-Add Method (OLA)

Overlap-add (OLA) method is the most simple and basic structure of TSM algorithm. In the OLA,

the decomposed analysis frames xm is used in recomposing without any modification. The result of OLA

is derived as:

y[n] =
∑
m=0

xm[n−mHs]w[n−mHs] (2.2)

where w is a window function with size N to help frames to be smoothly connected. Typically, Hann

window function is used.

In OLA method, there is no aligning process to preserve local periodic structure of the input signal

while recomposing the output signal. Therefore, phase jump artifacts, which means the distortion of

periodic structures in the signal, occurs in the output signal, and it causes warbling sound if there is a

harmonic component in the input signal.

2.1.2 Waveform-Similarity Overlap-Add Method (WSOLA)

Waveform-Similarity Overlap-Add (WSOLA) algorithm is the improved version of OLA. [5] WSOLA

is focused on the reduction of phase jump artifacts, which is the main problem of OLA.

3



To reduce the artifacts and preserve the periodic structure of the signal, WSOLA tries to decide

the next analysis frame based on the similarity of the previous frame. To find the proper frame, a small

amount of shifting ∆m is applied to the mth analysis frame, where ∆m is an integer in the range of

−∆max ≤ ∆m < ∆max. This adjusted analysis frame x
′

m is derived as:

x
′

m[n] =

x[n+mHa + ∆m], if −N/2 ≤ n < N/2,

0, otherwise.
(2.3)

To find the next frame that is most naturally connected with the mth adjusted analysis frame x
′

m,

WSOLA tries to find (m+ 1)th analysis frame most similar to the frame that follows x
′

m. This following

frame x̃m[n] is called natural progression of the adjusted analysis frame and derived as:

x̃m[n] =

x[n+mHa + ∆m +Hs], if −N/2 ≤ n < N/2,

0, otherwise.
(2.4)

In WSOLA, cross-correlation is used for checking similarity between frames to find the best value

for shifting. To decide the best value for ∆m+1, the system calculates cross-correlation from −∆max to

∆max.

xcorr(x̃m, xm+1,∆) =
∑
n=0

x̃m[n]x[n+ (m+ 1)Ha + ∆] (2.5)

∆m+1 = argmax
−∆max≤∆<∆max

xcorr(x̃m, xm+1,∆) (2.6)

After finding the adjusted analysis frames, WSOLA uses the adjusted analysis frame instead of the

analysis frame to synthesize the output in the same way as the OLA.

0.005 0.01 0.015
-1

-0.5

0

0.5

1
Input Signal

0.005 0.01 0.015
-1

-0.5

0

0.5

1
Output Signal (OLA)

0.005 0.01 0.015
Time (s)

-1

-0.5

0

0.5

1
Output Signal (WSOLA)

figure 2.1: Example result with OLA and WSOLA. There is no phase jump artifacts in the result with

WSOLA.

Because WSOLA uses the frame that is most naturally connected with the previous frame, phase

jump artifacts of the result are greatly reduced comparing to the result using OLA. However, WSOLA
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still has a few problems. The first one is transient doubling or stuttering. When we choose the adjusted

analysis frame x
′

m, the short transient signal can be located in multiple frames, or just skipped. Another

problem is that WSOLA cannot preserve phases in all frequency range in polyphonic signals because

WSOLA is trying to connect only the conspicuous phase of the signal.

2.1.3 TSM with Phase Vocoder Method (PV-TSM)

TSM method with phase vocoder (PV-TSM) is a method to preserve the phase of all signal elements.

[6, 7] The basic concept of PV-TSM is using short-time Fourier transform (STFT) to extract frequency-

domain information including phase, and resynthesize the output signal based on the extracted data.

The core idea of PV-TSM is to find the accurate instantaneous frequency of the sinusoidal component

IF(ω). We can derive the instantaneous frequency through the phase error between the predicted phase

and the actual phase.

If the phase from STFT φ is accurate, the predicted phase after ∆t seconds φPred is derived as:

φPred = φ+ ω∆t. (2.7)

Therefore, we can calculate the phase error φErr with the difference between the predicted phase φPred

and the actual phase φAct by

φErr = φAct − φPred − 2π · round(φAct − φPred) (2.8)

where 2π · round(φAct − φPred) is for adjusting the phase into the range [−π, π].

Because the phase error φErr means the error in ∆t seconds, the instantaneous frequency IF(ω) is

derived as:

IF(ω) = ω +
φErr

∆t
. (2.9)

In PV-TSM, the system modifies the phase of spectrogram based on the instantaneous frequency

to connect the phase of all signal elements. PV-TSM modifies the phase of STFT-ed input signal X to

XMod, and calculate inverse STFT to create the modified signal.

To calculate the instantaneous frequency of the mth analysis frame xm, we find the phase error with

the phase of (m+ 1)th analysis frame, and modify the phase of the signal:

φMod
m+1(ω) = φMod

m (ω) + IFm(ω)
Hs

Fs
(2.10)

where Hs/Fs is the time difference between mth frame and (m+1)th frame in seconds. With the modified

phase φMod
m , the STFT of mth frame is modified as:

XMod
m (k) = |Xm|φMod

m (k) (2.11)

and the output signal is created with the sum of inverse STFT of the modified signal.

As mentioned above, PV-TSM has a great advantage in preserving the phase of polyphonic signals.

However, it is difficult to preserve the short transient signal that is shorter than the length of analysis

frame. [8] Therefore, PV-TSM is not suitable for modifying the percussive signal.

2.1.4 Pitch-Synchronous Overlap-Add Method (PSOLA)

Pitch-Synchronous Overlap-Add (PSOLA) method is another improved version of OLA. [9] In

PSOLA algorithm, the pitch information of the audio signal is used to modify the audio signal.

5
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figure 2.2: Example result with WSOLA and PV-TSM. The transient signal is not preserved in the

result with PV-TSM.

At first, PSOLA extracts the pitch of the input signal, and finds the position of pitch marks, which

means the local maximum in the pitch period of the signal. If signal has unvoiced portions, which does

not have a pitch, the pitch marks are positioned in a constant rate. One of the way to find the pitch

mark is a peak-search approach. In this approach, (m+ 1)th pitch mark tm+1 and (m− 1)th pitch mark

tm−1 is derived as:

tm+1 = max([tm + δP0, tm + (2− δ)P0]) (2.12)

tm−1 = max([tm − δP0, tm − (2− δ)P0]) (2.13)

where P0 is the pitch period of the signal and δ is a constant factor. δ is usually in the range of [0.5, 0.9].

After finding the pitch marks, mth analysis frame xm has the center at mth pitch mark tm, and has

the length of 2P (tm):

xm =

x[n+ tm], if − P (tm) ≤ n < P (tm),

0, otherwise.
(2.14)

To synthesize the output signal, PSOLA defines the synthesis pitch mark first. The kth synthesis

frame is determined by the mth analysis frame that minimizes the pitch mark distance |αtm − t̃k| where

α is the time-stretching rate and t̃k is the kth synthesis pitch mark. The kth synthesis pitch mark is

located in a section away from the (k − 1)th pitch mark by a pitch period at the corresponding point in

time:

t̃k = t̃k−1 + P (ti). (2.15)

PSOLA is the high cost TSM algorithm because it needs a high-quality pitch tracking algorithm

to use. [5] Nevertheless, PSOLA is frequently used because it has an advantage in pitch-shifting. In

PSOLA, if the distance between a synthesis pitch mark is narrowed or widened, the pitch of the input

signal is changed. This pitch shifting with PSOLA is different from pitch-shifting based on resampling

because it preserves formant (spectral envelope) of the original signal. [10] Because the broken formant

6



causes the artificial timbre especially in human voice, PSOLA is greatly used for changing the pitch of

the human voice signal.
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figure 2.3: Example result of pitch shifting with WSOLA + resampling and PSOLA. The formant

(spectral envelope) is preserved in the result with PSOLA.

2.2 Dynamic Time Warping

Dynamic time warping (DTW) algorithm is the well-known algorithm that measures the temporal

similarity between two signals and finds the optimal path that aligns the two signals. [11] DTW has

been used in aligning temporal signals such as speech, music, and video.

The basic idea of DTW is using dynamic programming to find the path that has the lowest cost.

Before starting to find the optimal path, the similarity matrix C is calculated as:

C(i, j) = distance(X(i), Y (i)) (2.16)

where X and Y are features of two signal x and y. In the audio signal, STFT [12] and Mel-Frequency

Cepstral Coefficient [13] are frequently used as a feature in creating the similarity matrix, and Cosine

distance is used for calculating the distance.

To find the path, the DTW calculates the accumulated similarity matrix D first. The first row and

the first column of the accumulated similarity matrix D is calculated as:

D(n, 1) = sum(C(1 : n, 1)), n = [1, N ] (2.17)

D(1,m) = sum(C(1, 1 : m)),m = [M, 1] (2.18)

where M and N is the size of the similarity matrix. After the initialization of the first row and the

column, the rest part of the accumulated similarity matrix D is derived as:

D(n,m) = C(n,m) + min


D(n− 1,m)

D(n,m− 1)

D(n− 1,m− 1)

(2.19)

7



After calculating the accumulated similarity matrix D, the path is obtained to track the path from

destination to starting point of the similarity matrix backward.

2.3 Pitch Tracking Algorithm

Pitch tracking algorithm is the algorithm that measures the pitch of the given audio signal. There

are two ways to measure the pitch, time-domain method and frequency-domain method.

In frequency domain, the fundamental frequency F0 is estimated by observing features in STFT-

converted signal. Methods like harmonic pattern matching [14], cepstrum [15], and harmonic-product-

sum [16] are the frequency-domain pitch tracking algorithm.

In time domain, auto-correlation [17] and average magnitude difference function [18] is the repre-

sentative methods to track the pitch. Time-domain pitch tracking algorithm is analyzing the periodic

pattern of the signal to find the fundamental frequency F0.

8



Chapter 3. Related Works

As mentioned in the introduction, our goal is to extract and transfer the musical features from source

signal to target signal which sings the same song. In this chapter, we are focused on the research about

transferring musical expressions with additional information such as score and lyrics, and modifying

musical features of the signal.

3.1 Changing Musical Expressions with Extracting Features

There are some works in digital audio effects field about changing musical expressions of singing

voices and musical instruments with extracting features. Some studies tried to manipulate musical

features like vibrato [19], pitch, tempo [1, 20], and spectral envelope [21] for changing musical expressions.

These studies are the most basic research to change musical expressions, but because they manipulate

variables artificially to change musical expressions instead of using actual recorded examples, they are

cumbersome and sometimes unnatural.

3.2 Transfer Musical Styles to Synthesized Sources

Also, there are some studies to extract styles from recorded examples to transfer musical styles to

synthesized sources. [22, 23, 24] However, in this case, it requires the additional information such as

lyrics and scores, and it does not transfer expressions from audio to audio directly.

3.3 Aligning the Source Signal and the Target Signal

Because this system directly transfers expressions from audio to audio, it is important to align the

source signal and the target signal. In previous studies, some researchers tried audio-to-audio alignment

to align audio and additional information such as lyrics and scores. [25, 26] Because this additional

information contains onset data, the system does not have to align every frame by frame accurately.

Also, there are some studies to align the temporal alignment of two voice signals, [27, 28] but in this

case, they do not have to align every frame by frame because they used lyrical information to align them.

However, in this system, we try to align two audio signals without any additional information.
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Chapter 4. Proposed Architecture and Implementation

4.1 System Overview

Figure 4.1 illustrates the overall processing pipeline of the proposed system. It is composed of three

modules that extract acoustic features from both voice signals and process the source. The source signal

is transformed through the three modules in sequence, and the target signal is delivered to the three

modules to provide musical expressions.

The first module extracts the timing information from both signals, and align the tempo of the

source signal. In this process, we use both musical feature and lyrical feature to measure the timing of

the singing signal more accurate for every frame. After the feature extraction, the time-scale modification

algorithm is applied to modify the source signal.

After the temporal alignment procedure, the system extracts the pitch information of both signals

and align the pitch of the source signal. To extract the pitch, YIN algorithm [18] is used in this system.

After the feature extraction, the pitch synchronous overlap-add (PSOLA) algorithm is used to align the

pitch of the signal without distortion in the formant.

At last, the dynamics alignment module works. In this step, the system extracts dynamics feature

from both signals with envelope detector, and multiply the difference of both envelope signals to the

source signal to align the dynamics.

figure 4.1: System overview.

4.2 Temporal Alignment

The first step of the system is temporal alignment that synchronizes note timings between the

source voices. This is actually the most important step because the subsequent steps relies on the

aligned source for pitch and dynamics processing. We basically use dynamic time warping (DTW), a

dynamic programming algorithm which is popularly used for temporal alignment of music and audio

data [29]. The issue here is what type of features will be used as input for DTW.
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4.2.1 Feature Extraction

Considering that the source and target voices are rendered from the same song, one straightforward

approach is transcribing the audio signals into MIDI notes and use the melody notes for DTW [30].

However, this approach can be affected by performance of the transcription module and, moreover,

misses exploiting the phonetic information from lyrics which is another common part in the two singing

voices. Thus, we instead extract audio features from the signals and use them for DTW.

Our initial approach was simply using the magnitude spectrum of two singing voices as audio

features. However, the DTW algorithm often failed to find a correct alignment path when either one

voice has vibrato and pitch bending. The left-top in Figure4.2 shows the similarity matrix where each

element was computed from cosine distance between every pair of the two magnitude spectra. The

alignment path in red returned from the DTW algorithm tended to find the onset and offset of note

quite successfully. However, it has severe detour, for example, that in the range of 300 to 350 time

frames where the target voice has strong vibrato. This detour caused audible artifacts when the system

modifies the time scale of the source signal.

To solve the detour problem and improve the path accuracy, we tried three methods. The first

method is leveraging the phonetic information shared in lyrics of the song. The phonetic information

tends to be less affected by musical expressions such as vibrato and pitch and so can allow more stable

alignment. Since the phonetic information is related to the voice formant, we extracted the formant

features using linear predictive coefficients (LPC). We chose the filter order according to [31]. Using

LPC, we compute a separate similarity matrix. The left-middle in Figure 4.2 shows the similarity matrix

and alignment path by DTW. Compared to the DTW path by the spectrum, the detour in the segment

with strong vibrato become more diagonal. However, when we listened to the processed sound, the path

by LPC-only similarity matrix did not cause artifacts but often misses right note timings.

Considering these advantages and disadvantage of STFT and LPC, we create a new matrix by

averaging the two similarity matrices as follows:

S(i, j) = rSSTFT(i, j) + (1− r)SLPC(i, j) (4.1)

where r is the mix rate of the two matrices. In this study, we used 0.7 for r.

The left-bottom in Figure 4.2 shows that it successfully reduces the detour problem and, at the

same time, finds more accurate path comparing to the similarity matrix with one of STFT or LPC.

The second method is converting the frequency domain of STFT to mel-scale. Mel-scale is a scale

that maps frequency to perceptual pitches Since the perceptual pitch is proportional to the logarithmic

scale of the frequency [32], the similarity matrix with mel-scale STFT is less sensitive to the pitch

difference of the source signal and the target signal, and the amplitude of vibrato is transformed equally

in all harmonics. Figure 4.3 shows the spectrogram and mel-scaled spectrogram of an audio signal. To

convert spectrogram to mel-scaled spectrogram, filterbank approach is used. [33]

The last method is applying the maximum filter to the spectrum. The maximum filtering is effective

in suppressing vibrato or other pitch variations [2] and so this can help the detour problem. We used the

maximum filter to the magnitude spectrum of both source and target before computing the similarity

matrix as follows.

Xmax(i, j) = max(X(i, j − l : j + l)) (4.2)

where j corresponds to the frequency axis and l is the order of the maximum filter. In this paper, we

used 3 for l to compensate the error within 3 semitones.
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Similarity Matrix with LPC
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Similarity Matrix with STFT + LPC
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Similarity Matrix with Mel-Scale STFT
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Similarity Matrix with Mel-Scale STFT + LPC
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Similarity Matrix with Mel-Scale STFT and Max-Filtering + LPC
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figure 4.2: DTW path results with similarity matrices.
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Example spectrogram of an audio signal
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Example mel-scaled spectrogram of an audio signal
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Example max-filtered mel-scaled spectrogram of an audio signal
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figure 4.3: The spectrogram of an audio signal (top), the mel-scaled spectrogram of an audio signal

(middle), and the max-filtered mel-scaled spectrogram of an audio signal.
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4.2.2 Smoothing Time Stretch Ratio

Given the alignment path, we need to find a sequence of stretching ratio to apply them for a

time-stretching modification algorithm. Since the alignment path moves only three directions, upward,

rightward, and diagonal direction every frame, we need to smooth the path such that the stretching ratio

is within a reasonable range.

To apply a TSM algorithm to the source signal, we changed the DTW path into an explicit function

because an explicit function is easier to apply filters and calculate time-stretching rate. To convert DTW

path to an explicit function, we removed the vertical interval in the path as follows.

Algorithm 1 Removing vertical interval in the DTW path

1: expPath← q(1), i← 2

2: while i ≤ length(p) do

3: if p(i) 6= p(i− 1) then

4: expPath.append(q(i))

5: i← i+ 1

To reduce the minor detours and to make the path smoother to reduce artifacts, we first tried

constrained least squares method. The basic idea of smoothing with constrained least squares is that

dividing path curve into short frames and finding the polynomial curve that minimizes the difference

with the path. [34]

At first, we tried constrained least squares with linear function, and define the smoothed curve pl

as the sum of the slopes derived by constrained least squares:

minimize ‖AX − b‖2
subject to

∑
A = yend

(4.3)

where X(i, j) is the jth element of the ith frame, A(k) and b(k) is the slope and constant of the linear

function optimized for kth frame, and yend is the last y value of the DTW path. After the optimization,

we defined the smoothed curve pl as:

pl(n) =

n∑
i=1

A(i) (4.4)

while the hop size of the frame is 1.

This optimization with constrained least squares successfully removing angled part of the original

DTW path, but it also decreases path accuracy. Therefore, it was not appropriate for the system because

the system needs high accuracy to transfer the pitch and the dynamics.

The second method with constrained least squares is optimizing with quadratic function. In this

case, we used to connect quadratic functions derived from the optimization system. The condition of

constrained least squares is as follows:

minimize ‖AX2 +BX − c‖2
subject to 2AX +B > 0.

(4.5)

The constraints 2AX + B > 0 means that the optimized quadratic function should not decrease in the

range of the frame that the function is optimized. In this case, the optimized DTW path pq is derived

as:

pq(n) = A(i) ∗ n2 +B(i) ∗ n− c, i = floor(n/N) (4.6)
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while N is the hop size of the frame.

This quadratic optimization has several problems. First, it was a very high cost algorithm. There-

fore, it is difficult to apply it to the system because of too much time consuming. Also, there is a

disconnection in the boundary of every frames because we map different quadratic function for each

frames. Finally, the system cannot find the perfect optimization with the constraint 2AX + B > 0. In

that case, the optimized curve has a decreasing range, which cannot be used for time-stretching.
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figure 4.4: Raw path (blue) and filtered path with Savitzky-Golay filter (red).

To smooth the DTW path with minimizing the problems of constrained least square methods, we

applied 3rd-order Savitzky-Golay filter [35] to the path. Savitzky-Golay filter is a kind of filter that uses

linear least squares. With the algorithm proposed by Abraham Savitzky and Marcel J. E. Golay, linear

least squares of the signal can be obtained by a convolution. Therefore, we can apply a high-order least

squares optimization for every frame with low cost. The effect of Savitzky-Golay filter is shown in fig.

4.4.

To calculate the time-stretching rate α, the system simply used the slope of filtered path. Since one

path value corresponds to one frame, we could apply the path slope to the time-stretching rate of each

frame.

When correcting rhythm based on the path information, Time-Scale Modification(TSM) algorithm

is used. In this system, we used TSM Toolbox, the open source MATLAB TSM algorithm code. [20]

We tried both PV-TSM and WSOLA for modifying the source signal, but the WSOLA gives the better

result because WSOLA has an advantage in preserving the unvoiced signal.
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figure 4.5: Time stretching rate before (left) and after (right) the Savitzky-Golay filtering.
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4.3 Pitch Alignment

To transfer the pitch of the target signal to the source signal, we used YIN algorithm [18] to analyze

the pitch of the signals. When we analyze the pitch, the unvoiced signal is excepted because it is difficult

to measure, and is natural without changing the pitch.

To separate the unvoiced signal and voiced signal, the system uses aperiodicity of the signal. The

part of the signal where the aperiodicity falls below 0.2 is regarded as an unvoiced signal and excluded

from the pitch analysis and transplantation.

To reduce the unvoiced signal and get the stable pitch, the system uses harmonic-percussive source

separation (HPSS) with median filtering [36] to separate the percussive signal and the harmonic signal

from the singing voice. The system applies YIN algorithm to the harmonic signal to extract the more

stable pitch.

Since the timing problem has already been solved in the rhythm phase, it is simple to calculate the

pitch that needs to be changed based on the extracted pitch information. The beta value, the pitch

amount that should be changed, is calculated as follows.

β(i) =

f0t(i)/f0sT (i) if aperiodicity > 0.2

1 otherwise
(4.7)

f0 means the fundamental frequency of the signal, and source∗ means the rhythm modified source signal.

The PSOLA algorithm is used to modify a pitch based on the extracted pitch information because it

is an algorithm that can change the pitch without resampling. Since resampling causes the the formant

break and changes the timbre of the voice, using PSOLA can retain the voice timbre of the signal.

figure 4.6: Pitch alignment.
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4.4 Dynamics Alignment

The source signal, in which both the rhythm and pitch information are modified, is finally trans-

planted power of the target signal. The power of the signal is extracted envelope detector, which uses rms

value. In this system, we use rms value to extract envelope instead of peak value because the envelope

with peak value often outputs a negative number.

sTPE [n] = sTP [n] ∗ envt[n]/envsTP
[n] (4.8)

figure 4.7: Energy alignment.
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Chapter 5. Evaluation

5.1 Datasets

In this experiment, 4 songs were used as experimental data, and totally 12 modified signals were

generated using one target signal and three source signals for each song. The length of each song was

about 10 seconds to 20 seconds, and only the chorus of the original song was used. All singing is recorded

in the same place with same equipment. To verify that the system works well in various styles of songs,

we chose the 4 songs with different styles. One of the four songs was the song for female vocals and the

other three songs were male vocals. Two of the three songs with male vocal was the song with swing

rhythm, and other one was the song with low pitches.

table 5.1: The list of songs used for experiment.

song1 song2 song3 song4

gender male male male female

# of source 3 3 3 3

Remarks swing rhythm swing rhythm low pitch high pitch

5.2 Alignment Evaluation of the Converted Signal

To evaluate how well the alignment works, we tried to extract the note onset of the source, the

target, and the modified source. If the average difference of note onset timing with the target decreases

after the modification, it means that the alignment works well.

To extract the note onset, we used Tony, a program that extracts onset and pitch based on pYIN

and hidden Markov model. [37] Because the onset detection performance of Tony is not perfect, we

fine-tuned the onset timing and the number to calculate the accurate average onset difference.

figure 5.1: Tony, the pitch tracking and onset detection tool.
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In this experiment, we tested four cases: original source signal, aligned signal with STFT and

LPC, aligned signal with mel-scale STFT and LPC, and aligned signal with mel-scale STFT, LPC, and

max-filter. For each case, we have 12 examples, three per one song.

Figure 5.2 shows that aligning signal with mel-scaled STFT has less onset error comparing to aligning

signal with STFT in most cases, but there are some exceptional points when there is no max-filtering. In

all cases, max-filtered mel-scale STFT shows better onset error than STFT. Therefore, mel-scale STFT

improves the onset error a lot, and max-filtering makes mel-scale STFT more stable.

Figure 5.4 is the average of average onset difference depending on the aligned feature. In this figure,

we can see that mel-scaled STFT, max-filtering, and LPC reduces the average onset difference to 54.38%

comparing to the source, and to 44.64% comparing to STFT and LPC.
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figure 5.2: Average onset difference with target signal.

figure 5.3: Average onset difference with target signal. (except the aligned signal with mel-scale STFT

+ LPC)
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figure 5.4: Average of average onset difference with target signal depending on the aligned feature.

22



Chapter 6. Conclusion

In this paper, we proposed the system that improves the vocal expressions of the source signal

through the alignment with the target signal. The system tries to improve the expressions of vocal by

adjusting the alignment of the three elements of rhythm, pitch and energy using DTW, TSM algorithm

and envelope detector without any additional information while maintaining the original vocal tone.

This proposed system is mainly focused on the improvement of the temporal alignment because

temporal alignment is the most difficult process in the system, and the other two modules cannot work

properly if the temporal alignment is not achieved.

We used STFT as a feature for finding the optimal align path first. However, the path with STFT

was not accurate and has a detour problem, which means the detour path within one note because of

musical expressions like vibrato. To solve this problem, we proposed a three method to reduce it.

The first one is mixing the similarity matrices SSTFT and SLPC. Because SLPC represents lyrical

information, in the audio signal, SLPC helps the system to find more accurate path and reduce the detour

problem.

The second one is converting STFT to mel-scale. Because the perceptual pitch is proportional to

the mel-scale, it is easier in mel-scaled STFT to analyze the signal in pitch range, and the amplitude of

vibrato becomes equal in all harmonics. Mel-scaled STFT reduced the onset difference with the target

signal effectively, but there are some exceptions that mel-scaled STFT does not work well.

To reduce the exceptions in mel-scaled STFT, we applied maximum filter in mel-scaled STFT to

suppress the vibrato of the signal and reduce the effect of the pitch difference between the source signal

and the target signal. Because the maximum filter improves the stability of the system, the average offset

difference of examples that were not well aligned with the mel-scaled STFT decreased to the average

onset difference of well aligned examples when using the maximum filter.

Before aligning the timing of the source signal with DTW path, path smoothing is needed because

the DTW path is composed with only three directions: vertical, horizontal and diagonal. If the system

uses DTW path directly without smoothing, only a small number of frames are excessively deformed, and

it causes lots of artifacts. To solve this problem, we first tried constrained 1st and 2nd order least squares

method, but it was too much time-consuming and there was a slight timing mismatch. Therefore, we used

3rd order Savitzky-Golay filtering, which simplifies the least squares method, to smooth the path fast

with high-order least squares method. To modify the signal with smoothed time stretch rate, WSOLA

is used instead of PV-TSM because the singing voice is monophonic signal, and contains both harmonic

and percussive components.

For transferring pitch expressions, we extracted the pitch of the temporally aligned source signal

and the target signal with YIN algorithm. Before extracting the pitch contour, we applied harmonic-

percussive source separation to the audio signal to separate harmonic component and percussive compo-

nent of the audio signal. Pitch tracking with harmonic component slightly increases the accuracy of the

extracted pitch contour. To modify the pitch of singing voice, we used PSOLA instead of other TSM

methods because only PSOLA can preserve the formant of singing voices when changing the pitch of the

signal.

The last process was dynamics transfer. For dynamics transfer, we extracted rms value and apply

it to the source signal that the timing and the pitch is modified.

23



For the future works, hidden Markov model (HMM) can be applied to improve the temporal align-

ment. Because LPC is not enough to represent the lyrical information in the audio signal, separating

the unvoiced signal and the voiced signal through HMM can provide a useful guide for aligning the note

timing of the source signal. [38]

Furthermore, this research can be extended to the general musical expression transfer in different

songs. Because this research is focused on the case that only the source and the target is the same song,

it can be used in a limited situations. In this case, deep neural networks (DNN) can be a solution for it.

Like a study for the artistic style transfer of fine art through DNN [39], the musical style transfer may

be possible with DNN.
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