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Abstract

This paper presents an audio signal processing system that automatically transfers singing expressions
from one voice to another. Depending on singers’ skills, a song is sung with great variations in terms of
note onset time, pitch and energy. The system focused on extracting and transferring musical expressions,
excluding the timbre of singers. This singing expression transfer system can provide more intuitive
guidance to those who want to learn new vocabulary expressions and help the music activities of those
who have difficulty in singing. The system transfers expressions in the order of tempo, pitch, and energy.
In this study, we propose an algorithm to align the tempo of the note, a method to match pitch and
energy information, and a method to optimize the performance of these processes. Based on these
methods, we propose a new singing expression transfer system and propose a new approach to singing

voice modification.

Keywords Singing voice, expression transfer, time-scale modification, dynamic time warping
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Chapter 1. Introduction

Singing is a popular musical activity that many people enjoy, for example, in the form of karaoke.
Depending on singing skills, a song can be rendered into touching music or just noisy sounds. What if
my bad singing can be transformed and so sound like a professional? In this research, we present a vocal
processing system that automatically transfers singing expressions from one voice to another.

Commercial vocal correction tools such as Autotune!, VariAudio? and Melodyne® mainly focus on
modifying pitch of singing voice. Some of them are capable of manipulating note onset timing or other
musical expressions by editing transcribed MIDI notes. Although they provide automated controls, the
correction process is often tedious and repetitive until satisfactory results are achieved. There are some
previous work that attempted to minimize the manual effort in modifying musical expressions. Bryan et.
al proposed a variable-rate time-stretching system that allows users to modify the stretching ratio easily
[1]. Given a user-guided stiffness curve, the system automatically computed time-dependent stretch
rate via a constrained optimization program. Roebel et. al proposed an algorithm to remove vibrato
expressions [2]. They operated entirely based on spectral envelope smoothing without manipulation of
individual partial parameters. While these methods provide more convenience to process singing voice

signals, they still require user guide or parametric control to some extent.
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figure 1.1: Antares Autotune 8 Graphical Mode.?In the existing vocal correction tools, users should

manipulate features in manual to modify singing voice signals.

In this thesis, we propose an audio signal processing system that modifies musical expressions of
singing voice in a fully automatic manner with a target singing voice as a control guide. Assuming

that both source and target voices sing the same song, the system transfers three musical expressions

Thttp://www.antarestech.com/products/index.php
2https://wuw.steinberg.net/en/products/cubase/cubase_pro.html
3http://www.celemony.com/en/melodyne/what-is-melodyne
Shttp://wuw.antarestech.com/products/detail.php?product=Auto-Tune_8_66
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from target to source: tempo, pitch, and dynamics. First, it temporally synchronizes two singing voices
using dynamic time warping on vibrato-suppressed mel-scale spectrum and a formant feature. Second, it
extracts pitch ratio between the two voices and modifies the pitch of source voice using pitch-synchronous
overlap-add algorithm (PSOLA). Finally, it modifies dynamics of the source voice by extracting the ratio
of amplitude envelops. In the series of process, the system does not use any user guide or additional
information such as lyrics and music scores beside a target voice. Since the system modifies only technical
elements in singing and preserves the timbre of source voice, it will be useful for not only sound production

but also vocal training.



Chapter 2. Research Background

2.1 Time-Scale Modification Algorithm

Time-scale modification (TSM) algorithm is the process that manipulates the length of the audio
signal. [3] The ideal TSM algorithm should modify only the tempo of the signal, and preserve any other
properties such as pitch and timbre. This TSM method is commonly used in sound producing area to
synchronize the duration of audio sources to other media source, or change the pitch of audio sources
with resampling without changing the duration of audio sources.

There are two main issues in TSM procedures. The first one is degradation of percussive transients.
[4] While modifying audio sources with TSM algorithms, percussive transients often disappeared or are
doubled. The other problem is phase discontinuity in mixed audio sources. Because the phase of each
sources are different, phases in the mixed sources are discontinued with overlap-add based TSM method.

The key idea of TSM algorithm is decomposing the audio signal in the short length with the analysis
hop size H,, modifying the decomposed audio frames and recomposing those modified frames with the

th

synthesis hop size Hs. The m'™™ decomposed frame =z, is derived as:

x[n +mH,|, if —N/2<n<N/2,
Tm[n] = [ ] / / (2.1)
0, otherwise.
where N is the size of the frame. While H, < Hj, the audio signal will be stretched after the procedure,
and will be compressed if H, > H,.
In this section, we introduce some frequently used TSM algorithms and advantages and limitations

of each methods.

2.1.1 Overlap-Add Method (OLA)

Overlap-add (OLA) method is the most simple and basic structure of TSM algorithm. In the OLA,
the decomposed analysis frames z,, is used in recomposing without any modification. The result of OLA

is derived as:
y[n] = Z T [n — mHlw[n — mH;] (2.2)
m=0

where w is a window function with size N to help frames to be smoothly connected. Typically, Hann
window function is used.

In OLA method, there is no aligning process to preserve local periodic structure of the input signal
while recomposing the output signal. Therefore, phase jump artifacts, which means the distortion of
periodic structures in the signal, occurs in the output signal, and it causes warbling sound if there is a

harmonic component in the input signal.

2.1.2 Waveform-Similarity Overlap-Add Method (WSOLA)

Waveform-Similarity Overlap-Add (WSOLA) algorithm is the improved version of OLA. [5] WSOLA

is focused on the reduction of phase jump artifacts, which is the main problem of OLA.



To reduce the artifacts and preserve the periodic structure of the signal, WSOLA tries to decide
the next analysis frame based on the similarity of the previous frame. To find the proper frame, a small
amount of shifting A,, is applied to the m'™ analysis frame, where A,, is an integer in the range of
—Anax < A, < Apax. This adjusted analysis frame x;n is derived as:

, x[n+mHg + Ay, it —N/2<n<N/2,

n| = (2.3)
0, otherwise.

To find the next frame that is most naturally connected with the mt" adjusted analysis frame x'm,
WSOLA tries to find (m + 1) analysis frame most similar to the frame that follows 2, . This following

frame Z,,[n] is called natural progression of the adjusted analysis frame and derived as:

_ zn+mHy + Ay, + Hyl, if —N/2<n<N/2,
Tm[n] = (2.4)
0, otherwise.

In WSOLA, cross-correlation is used for checking similarity between frames to find the best value
for shifting. To decide the best value for A,, 1, the system calculates cross-correlation from —A,.x to
Amax~

XCOUT (T, T 41, A) = Y T [n]a[n + (m+ 1) Hy + A (2.5)
n=0

JAVIREES argmax  XCOrr(Zy, Tmt1, A) (2.6)
7AIII&XSA<AIHB,X

After finding the adjusted analysis frames, WSOLA uses the adjusted analysis frame instead of the

analysis frame to synthesize the output in the same way as the OLA.

Input Signal
1 T
0.5 b
0 | -
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-1 L L I
0.005 0.01 0.015

Output Signal (OLA)

0.005 0.01 0.015
Output Signal (WSOLA)

-1 L L L
0.005 0.01 0.015

Time (s)

figure 2.1: Example result with OLA and WSOLA. There is no phase jump artifacts in the result with
WSOLA.

Because WSOLA uses the frame that is most naturally connected with the previous frame, phase

jump artifacts of the result are greatly reduced comparing to the result using OLA. However, WSOLA



still has a few problems. The first one is transient doubling or stuttering. When we choose the adjusted
analysis frame x;n, the short transient signal can be located in multiple frames, or just skipped. Another
problem is that WSOLA cannot preserve phases in all frequency range in polyphonic signals because

WSOLA is trying to connect only the conspicuous phase of the signal.

2.1.3 TSM with Phase Vocoder Method (PV-TSM)

TSM method with phase vocoder (PV-TSM) is a method to preserve the phase of all signal elements.
[6, 7] The basic concept of PV-TSM is using short-time Fourier transform (STFT) to extract frequency-
domain information including phase, and resynthesize the output signal based on the extracted data.

The core idea of PV-TSM is to find the accurate instantaneous frequency of the sinusoidal component
IF(w). We can derive the instantaneous frequency through the phase error between the predicted phase
and the actual phase.

If the phase from STFT ¢ is accurate, the predicted phase after At seconds ¢F**9 is derived as:

P = ¢ + wAL. (2.7)

Therefore, we can calculate the phase error ¢P with the difference between the predicted phase ¢Fred

and the actual phase ¢*°t by
gz/)Err _ ¢Act o ¢Pred — 9. round(¢ACt o Q/)Pred) (28)

where 27 - round(¢pAt — ¢Fre4) is for adjusting the phase into the range [, 7].
Because the phase error ¢¥™ means the error in At seconds, the instantaneous frequency IF(w) is

derived as: ¢Err
At

In PV-TSM, the system modifies the phase of spectrogram based on the instantaneous frequency

IF(w)=w+ (2.9)

to connect the phase of all signal elements. PV-TSM modifies the phase of STFT-ed input signal X to
XMed “and calculate inverse STFT to create the modified signal.

To calculate the instantaneous frequency of the m'™ analysis frame z,,, we find the phase error with
the phase of (m + 1)*" analysis frame, and modify the phase of the signal:

AT () = N () + TRy () 3 (210)

where H,/F is the time difference between m'" frame and (m+1)*" frame in seconds. With the modified
phase ¢Med the STFT of m'" frame is modified as:

X (k) = | Xon | (k) (2.11)

and the output signal is created with the sum of inverse STFT of the modified signal.
As mentioned above, PV-TSM has a great advantage in preserving the phase of polyphonic signals.
However, it is difficult to preserve the short transient signal that is shorter than the length of analysis

frame. [8] Therefore, PV-TSM is not suitable for modifying the percussive signal.

2.1.4 Pitch-Synchronous Overlap-Add Method (PSOLA)

Pitch-Synchronous Overlap-Add (PSOLA) method is another improved version of OLA. [9] In
PSOLA algorithm, the pitch information of the audio signal is used to modify the audio signal.
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figure 2.2: Example result with WSOLA and PV-TSM. The transient signal is not preserved in the
result with PV-TSM.

At first, PSOLA extracts the pitch of the input signal, and finds the position of pitch marks, which
means the local maximum in the pitch period of the signal. If signal has unvoiced portions, which does
not have a pitch, the pitch marks are positioned in a constant rate. One of the way to find the pitch
mark is a peak-search approach. In this approach, (m -+ 1)* pitch mark #,,,1 and (m — 1)*® pitch mark
tm—1 1s derived as:

tma1 = max([ty, + 0Py, tm + (2 — 8) Py]) (2.12)

tmo1 = max([tm — 6Py, tm — (2 — 0)Pp)) (2.13)

where Py is the pitch period of the signal and J is a constant factor. ¢ is usually in the range of [0.5,0.9].

After finding the pitch marks, m*™ analysis frame z,, has the center at m*™ pitch mark ¢,,, and has
the length of 2P (¢,,):

. = x[n + tm], if —P(ty) <n<P(tn), (2.14)
0, otherwise.

To synthesize the output signal, PSOLA defines the synthesis pitch mark first. The k' synthesis
frame is determined by the m'" analysis frame that minimizes the pitch mark distance |at,, — t~k| where
« is the time-stretching rate and ¢ is the k™ synthesis pitch mark. The k" synthesis pitch mark is
located in a section away from the (k — 1)*® pitch mark by a pitch period at the corresponding point in
time:

th =tp_1+ P(t;). (2.15)

PSOLA is the high cost TSM algorithm because it needs a high-quality pitch tracking algorithm
to use. [5] Nevertheless, PSOLA is frequently used because it has an advantage in pitch-shifting. In
PSOLA, if the distance between a synthesis pitch mark is narrowed or widened, the pitch of the input
signal is changed. This pitch shifting with PSOLA is different from pitch-shifting based on resampling

because it preserves formant (spectral envelope) of the original signal. [10] Because the broken formant



causes the artificial timbre especially in human voice, PSOLA is greatly used for changing the pitch of

the human voice signal.
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figure 2.3: Example result of pitch shifting with WSOLA + resampling and PSOLA. The formant
(spectral envelope) is preserved in the result with PSOLA.

2.2 Dynamic Time Warping

Dynamic time warping (DTW) algorithm is the well-known algorithm that measures the temporal
similarity between two signals and finds the optimal path that aligns the two signals. [11] DTW has
been used in aligning temporal signals such as speech, music, and video.

The basic idea of DTW is using dynamic programming to find the path that has the lowest cost.

Before starting to find the optimal path, the similarity matrix C' is calculated as:
C(i, j) = distance(X (4), Y (7)) (2.16)

where X and Y are features of two signal « and y. In the audio signal, STFT [12] and Mel-Frequency
Cepstral Coefficient [13] are frequently used as a feature in creating the similarity matrix, and Cosine
distance is used for calculating the distance.

To find the path, the DTW calculates the accumulated similarity matrix D first. The first row and

the first column of the accumulated similarity matrix D is calculated as:
D(n,1) =sum(C(1:n,1)),n = [1,N] (2.17)
D(1,m) =sum(C(1,1:m)),m = [M,1] (2.18)
where M and N is the size of the similarity matrix. After the initialization of the first row and the
column, the rest part of the accumulated similarity matrix D is derived as:
D(n—1,m)
D(n,m) = C(n,m) +min ¢ D(n,m — 1) (2.19)
D(n—1,m—1)



After calculating the accumulated similarity matrix D, the path is obtained to track the path from

destination to starting point of the similarity matrix backward.

2.3 Pitch Tracking Algorithm

Pitch tracking algorithm is the algorithm that measures the pitch of the given audio signal. There
are two ways to measure the pitch, time-domain method and frequency-domain method.

In frequency domain, the fundamental frequency Fy is estimated by observing features in STFT-
converted signal. Methods like harmonic pattern matching [14], cepstrum [15], and harmonic-product-
sum [16] are the frequency-domain pitch tracking algorithm.

In time domain, auto-correlation [17] and average magnitude difference function [18] is the repre-
sentative methods to track the pitch. Time-domain pitch tracking algorithm is analyzing the periodic

pattern of the signal to find the fundamental frequency Fy.



Chapter 3. Related Works

As mentioned in the introduction, our goal is to extract and transfer the musical features from source
signal to target signal which sings the same song. In this chapter, we are focused on the research about
transferring musical expressions with additional information such as score and lyrics, and modifying

musical features of the signal.

3.1 Changing Musical Expressions with Extracting Features

There are some works in digital audio effects field about changing musical expressions of singing
voices and musical instruments with extracting features. Some studies tried to manipulate musical
features like vibrato [19], pitch, tempo [1, 20], and spectral envelope [21] for changing musical expressions.
These studies are the most basic research to change musical expressions, but because they manipulate
variables artificially to change musical expressions instead of using actual recorded examples, they are

cumbersome and sometimes unnatural.

3.2 Transfer Musical Styles to Synthesized Sources

Also, there are some studies to extract styles from recorded examples to transfer musical styles to
synthesized sources. [22, 23, 24] However, in this case, it requires the additional information such as

lyrics and scores, and it does not transfer expressions from audio to audio directly.

3.3 Aligning the Source Signal and the Target Signal

Because this system directly transfers expressions from audio to audio, it is important to align the
source signal and the target signal. In previous studies, some researchers tried audio-to-audio alignment
to align audio and additional information such as lyrics and scores. [25, 26] Because this additional
information contains onset data, the system does not have to align every frame by frame accurately.
Also, there are some studies to align the temporal alignment of two voice signals, [27, 28] but in this
case, they do not have to align every frame by frame because they used lyrical information to align them.

However, in this system, we try to align two audio signals without any additional information.



Chapter 4. Proposed Architecture and Implementation

4.1 System Overview

Figure 4.1 illustrates the overall processing pipeline of the proposed system. It is composed of three
modules that extract acoustic features from both voice signals and process the source. The source signal
is transformed through the three modules in sequence, and the target signal is delivered to the three
modules to provide musical expressions.

The first module extracts the timing information from both signals, and align the tempo of the
source signal. In this process, we use both musical feature and lyrical feature to measure the timing of
the singing signal more accurate for every frame. After the feature extraction, the time-scale modification
algorithm is applied to modify the source signal.

After the temporal alignment procedure, the system extracts the pitch information of both signals
and align the pitch of the source signal. To extract the pitch, YIN algorithm [18] is used in this system.
After the feature extraction, the pitch synchronous overlap-add (PSOLA) algorithm is used to align the
pitch of the signal without distortion in the formant.

At last, the dynamics alignment module works. In this step, the system extracts dynamics feature
from both signals with envelope detector, and multiply the difference of both envelope signals to the

source signal to align the dynamics.

Temporal Alignment Pitch Alignment Dynamics Alignment
Target
Singing Voice
Ly e L —>] 5 —
Feature | L Pitch | _ Envelope
| Extraction |..,| DTW | Smoothing E _ Al || Detector i __,| Detector
stretching ratio E harmonic signal i
_____________ 4 R
smoothed pitch ratio gain ratio
stretching ratio
Sin;ﬁ')\lgj;r(\:/iice &Eﬂiﬁ?gj‘c‘; FCIEIIE e sm“gﬂf?gace
S St STp STPE

figure 4.1: System overview.

4.2 Temporal Alignment

The first step of the system is temporal alignment that synchronizes note timings between the
source voices. This is actually the most important step because the subsequent steps relies on the
aligned source for pitch and dynamics processing. We basically use dynamic time warping (DTW), a
dynamic programming algorithm which is popularly used for temporal alignment of music and audio

data [29]. The issue here is what type of features will be used as input for DTW.

10



4.2.1 Feature Extraction

Considering that the source and target voices are rendered from the same song, one straightforward
approach is transcribing the audio signals into MIDI notes and use the melody notes for DTW [30].
However, this approach can be affected by performance of the transcription module and, moreover,
misses exploiting the phonetic information from lyrics which is another common part in the two singing
voices. Thus, we instead extract audio features from the signals and use them for DTW.

Our initial approach was simply using the magnitude spectrum of two singing voices as audio
features. However, the DTW algorithm often failed to find a correct alignment path when either one
voice has vibrato and pitch bending. The left-top in Figure4.2 shows the similarity matrix where each
element was computed from cosine distance between every pair of the two magnitude spectra. The
alignment path in red returned from the DTW algorithm tended to find the onset and offset of note
quite successfully. However, it has severe detour, for example, that in the range of 300 to 350 time
frames where the target voice has strong vibrato. This detour caused audible artifacts when the system
modifies the time scale of the source signal.

To solve the detour problem and improve the path accuracy, we tried three methods. The first
method is leveraging the phonetic information shared in lyrics of the song. The phonetic information
tends to be less affected by musical expressions such as vibrato and pitch and so can allow more stable
alignment. Since the phonetic information is related to the voice formant, we extracted the formant
features using linear predictive coefficients (LPC). We chose the filter order according to [31]. Using
LPC, we compute a separate similarity matrix. The left-middle in Figure 4.2 shows the similarity matrix
and alignment path by DTW. Compared to the DTW path by the spectrum, the detour in the segment
with strong vibrato become more diagonal. However, when we listened to the processed sound, the path
by LPC-only similarity matrix did not cause artifacts but often misses right note timings.

Considering these advantages and disadvantage of STFT and LPC, we create a new matrix by

averaging the two similarity matrices as follows:
S(i, j) = rSstrr (i, j) + (1 —r)Suec(i, ) (4.1)

where 7 is the mix rate of the two matrices. In this study, we used 0.7 for 7.

The left-bottom in Figure 4.2 shows that it successfully reduces the detour problem and, at the
same time, finds more accurate path comparing to the similarity matrix with one of STFT or LPC.

The second method is converting the frequency domain of STFT to mel-scale. Mel-scale is a scale
that maps frequency to perceptual pitches Since the perceptual pitch is proportional to the logarithmic
scale of the frequency [32], the similarity matrix with mel-scale STFT is less sensitive to the pitch
difference of the source signal and the target signal, and the amplitude of vibrato is transformed equally
in all harmonics. Figure 4.3 shows the spectrogram and mel-scaled spectrogram of an audio signal. To
convert spectrogram to mel-scaled spectrogram, filterbank approach is used. [33]

The last method is applying the maximum filter to the spectrum. The maximum filtering is effective
in suppressing vibrato or other pitch variations [2] and so this can help the detour problem. We used the
maximum filter to the magnitude spectrum of both source and target before computing the similarity
matrix as follows.

Xonaz(i,7) = max(X (3,5 —1:5+1)) (4.2)

where j corresponds to the frequency axis and [ is the order of the maximum filter. In this paper, we

used 3 for [ to compensate the error within 3 semitones.
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(middle), and the maz-filtered mel-scaled spectrogram of an audio signal.



4.2.2 Smoothing Time Stretch Ratio

Given the alignment path, we need to find a sequence of stretching ratio to apply them for a
time-stretching modification algorithm. Since the alignment path moves only three directions, upward,
rightward, and diagonal direction every frame, we need to smooth the path such that the stretching ratio
is within a reasonable range.

To apply a TSM algorithm to the source signal, we changed the DTW path into an explicit function
because an explicit function is easier to apply filters and calculate time-stretching rate. To convert DTW

path to an explicit function, we removed the vertical interval in the path as follows.

Algorithm 1 Removing vertical interval in the DTW path
1: expPath < q(1),i < 2
2: while ¢ < length(p) do
3: if p(i) # p(i — 1) then
4: expPath.append(q(i))

5: 11+ 1

To reduce the minor detours and to make the path smoother to reduce artifacts, we first tried
constrained least squares method. The basic idea of smoothing with constrained least squares is that
dividing path curve into short frames and finding the polynomial curve that minimizes the difference
with the path. [34]

At first, we tried constrained least squares with linear function, and define the smoothed curve p;

as the sum of the slopes derived by constrained least squares:

minimize  ||AX —b||2

(4.3)
subject to > A = Yena

where X (i, ) is the j*® element of the i*"" frame, A(k) and b(k) is the slope and constant of the linear
function optimized for k' frame, and yenq is the last y value of the DTW path. After the optimization,

we defined the smoothed curve p; as:
pi(n) =Y A(i) (4.4)

while the hop size of the frame is 1.

This optimization with constrained least squares successfully removing angled part of the original
DTW path, but it also decreases path accuracy. Therefore, it was not appropriate for the system because
the system needs high accuracy to transfer the pitch and the dynamics.

The second method with constrained least squares is optimizing with quadratic function. In this
case, we used to connect quadratic functions derived from the optimization system. The condition of

constrained least squares is as follows:

minimize [|[AX? + BX — ¢|2

(4.5)
subject to 2AX +B>0.

The constraints 2AX + B > 0 means that the optimized quadratic function should not decrease in the
range of the frame that the function is optimized. In this case, the optimized DTW path p, is derived
as:

pqg(n) = A(i) * n® + B(i) *n — ¢,i = floor(n/N) (4.6)

14



while N is the hop size of the frame.

This quadratic optimization has several problems. First, it was a very high cost algorithm. There-
fore, it is difficult to apply it to the system because of too much time consuming. Also, there is a
disconnection in the boundary of every frames because we map different quadratic function for each
frames. Finally, the system cannot find the perfect optimization with the constraint 2AX + B > 0. In

that case, the optimized curve has a decreasing range, which cannot be used for time-stretching.
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figure 4.4: Raw path (blue) and filtered path with Savitzky-Golay filter (red).

To smooth the DTW path with minimizing the problems of constrained least square methods, we
applied 3rd-order Savitzky-Golay filter [35] to the path. Savitzky-Golay filter is a kind of filter that uses
linear least squares. With the algorithm proposed by Abraham Savitzky and Marcel J. E. Golay, linear
least squares of the signal can be obtained by a convolution. Therefore, we can apply a high-order least
squares optimization for every frame with low cost. The effect of Savitzky-Golay filter is shown in fig.
4.4.

To calculate the time-stretching rate «, the system simply used the slope of filtered path. Since one
path value corresponds to one frame, we could apply the path slope to the time-stretching rate of each
frame.

When correcting rhythm based on the path information, Time-Scale Modification(TSM) algorithm
is used. In this system, we used TSM Toolbox, the open source MATLAB TSM algorithm code. [20]
We tried both PV-TSM and WSOLA for modifying the source signal, but the WSOLA gives the better

result because WSOLA has an advantage in preserving the unvoiced signal.
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figure 4.5: Time stretching rate before (left) and after (right) the Savitzky-Golay filtering.
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4.3 Pitch Alignment

To transfer the pitch of the target signal to the source signal, we used YIN algorithm [18] to analyze
the pitch of the signals. When we analyze the pitch, the unvoiced signal is excepted because it is difficult
to measure, and is natural without changing the pitch.

To separate the unvoiced signal and voiced signal, the system uses aperiodicity of the signal. The
part of the signal where the aperiodicity falls below 0.2 is regarded as an unvoiced signal and excluded
from the pitch analysis and transplantation.

To reduce the unvoiced signal and get the stable pitch, the system uses harmonic-percussive source
separation (HPSS) with median filtering [36] to separate the percussive signal and the harmonic signal
from the singing voice. The system applies YIN algorithm to the harmonic signal to extract the more
stable pitch.

Since the timing problem has already been solved in the rhythm phase, it is simple to calculate the
pitch that needs to be changed based on the extracted pitch information. The beta value, the pitch

amount that should be changed, is calculated as follows.

, F0:(2)/ f0s,.(2) if aperiodicity > 0.2
B(i) = ’ (4.7)
1 otherwise
f0 means the fundamental frequency of the signal, and sourcex means the rhythm modified source signal.
The PSOLA algorithm is used to modify a pitch based on the extracted pitch information because it
is an algorithm that can change the pitch without resampling. Since resampling causes the the formant

break and changes the timbre of the voice, using PSOLA can retain the voice timbre of the signal.
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figure 4.6: Pitch alignment.
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4.4 Dynamics Alignment

The source signal, in which both the rhythm and pitch information are modified, is finally trans-
planted power of the target signal. The power of the signal is extracted envelope detector, which uses rms
value. In this system, we use rms value to extract envelope instead of peak value because the envelope

with peak value often outputs a negative number.

srprln] = spp[n| * envin|/envg,. . [n] (4.8)
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figure 4.7: Energy alignment.
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Chapter 5. Evaluation

5.1 Datasets

In this experiment, 4 songs were used as experimental data, and totally 12 modified signals were
generated using one target signal and three source signals for each song. The length of each song was
about 10 seconds to 20 seconds, and only the chorus of the original song was used. All singing is recorded
in the same place with same equipment. To verify that the system works well in various styles of songs,
we chose the 4 songs with different styles. One of the four songs was the song for female vocals and the
other three songs were male vocals. Two of the three songs with male vocal was the song with swing

rhythm, and other one was the song with low pitches.

table 5.1: The list of songs used for experiment.

songl song?2 song3 song4
gender male male male female
# of source 3 3 3 3

Remarks swing rhythm swing rhythm low pitch high pitch

5.2 Alignment Evaluation of the Converted Signal

To evaluate how well the alignment works, we tried to extract the note onset of the source, the
target, and the modified source. If the average difference of note onset timing with the target decreases
after the modification, it means that the alignment works well.

To extract the note onset, we used Tony, a program that extracts onset and pitch based on pYIN
and hidden Markov model. [37] Because the onset detection performance of Tony is not perfect, we

fine-tuned the onset timing and the number to calculate the accurate average onset difference.
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figure 5.1: Tony, the pitch tracking and onset detection tool.
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In this experiment, we tested four cases: original source signal, aligned signal with STFT and
LPC, aligned signal with mel-scale STFT and LPC, and aligned signal with mel-scale STFT, LPC, and
max-filter. For each case, we have 12 examples, three per one song.

Figure 5.2 shows that aligning signal with mel-scaled STFT has less onset error comparing to aligning
signal with STFT in most cases, but there are some exceptional points when there is no max-filtering. In
all cases, max-filtered mel-scale STFT shows better onset error than STFT. Therefore, mel-scale STFT
improves the onset error a lot, and max-filtering makes mel-scale STFT more stable.

Figure 5.4 is the average of average onset difference depending on the aligned feature. In this figure,
we can see that mel-scaled STFT, max-filtering, and LPC reduces the average onset difference to 54.38%

comparing to the source, and to 44.64% comparing to STFT and LPC.
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Chapter 6. Conclusion

In this paper, we proposed the system that improves the vocal expressions of the source signal
through the alignment with the target signal. The system tries to improve the expressions of vocal by
adjusting the alignment of the three elements of rhythm, pitch and energy using DTW, TSM algorithm
and envelope detector without any additional information while maintaining the original vocal tone.

This proposed system is mainly focused on the improvement of the temporal alignment because
temporal alignment is the most difficult process in the system, and the other two modules cannot work
properly if the temporal alignment is not achieved.

We used STFT as a feature for finding the optimal align path first. However, the path with STFT
was not accurate and has a detour problem, which means the detour path within one note because of
musical expressions like vibrato. To solve this problem, we proposed a three method to reduce it.

The first one is mixing the similarity matrices Ssrpr and Sppc. Because Sppc represents lyrical
information, in the audio signal, St pc helps the system to find more accurate path and reduce the detour
problem.

The second one is converting STFT to mel-scale. Because the perceptual pitch is proportional to
the mel-scale, it is easier in mel-scaled STFT to analyze the signal in pitch range, and the amplitude of
vibrato becomes equal in all harmonics. Mel-scaled STFT reduced the onset difference with the target
signal effectively, but there are some exceptions that mel-scaled STFT does not work well.

To reduce the exceptions in mel-scaled STFT, we applied maximum filter in mel-scaled STFT to
suppress the vibrato of the signal and reduce the effect of the pitch difference between the source signal
and the target signal. Because the maximum filter improves the stability of the system, the average offset
difference of examples that were not well aligned with the mel-scaled STFT decreased to the average
onset difference of well aligned examples when using the maximum filter.

Before aligning the timing of the source signal with DTW path, path smoothing is needed because
the DTW path is composed with only three directions: vertical, horizontal and diagonal. If the system
uses DTW path directly without smoothing, only a small number of frames are excessively deformed, and
it causes lots of artifacts. To solve this problem, we first tried constrained 15¢ and 2°9 order least squares
method, but it was too much time-consuming and there was a slight timing mismatch. Therefore, we used
3'4 order Savitzky-Golay filtering, which simplifies the least squares method, to smooth the path fast
with high-order least squares method. To modify the signal with smoothed time stretch rate, WSOLA
is used instead of PV-TSM because the singing voice is monophonic signal, and contains both harmonic
and percussive components.

For transferring pitch expressions, we extracted the pitch of the temporally aligned source signal
and the target signal with YIN algorithm. Before extracting the pitch contour, we applied harmonic-
percussive source separation to the audio signal to separate harmonic component and percussive compo-
nent of the audio signal. Pitch tracking with harmonic component slightly increases the accuracy of the
extracted pitch contour. To modify the pitch of singing voice, we used PSOLA instead of other TSM
methods because only PSOLA can preserve the formant of singing voices when changing the pitch of the
signal.

The last process was dynamics transfer. For dynamics transfer, we extracted rms value and apply

it to the source signal that the timing and the pitch is modified.
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For the future works, hidden Markov model (HMM) can be applied to improve the temporal align-
ment. Because LPC is not enough to represent the lyrical information in the audio signal, separating
the unvoiced signal and the voiced signal through HMM can provide a useful guide for aligning the note
timing of the source signal. [38]

Furthermore, this research can be extended to the general musical expression transfer in different
songs. Because this research is focused on the case that only the source and the target is the same song,
it can be used in a limited situations. In this case, deep neural networks (DNN) can be a solution for it.
Like a study for the artistic style transfer of fine art through DNN [39], the musical style transfer may
be possible with DNN.
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