Singing Expression Transfer from One Voice to Another for a Given Song

Korea Advanced Institute of Science and Technology Sangeon Yong, Juhan Nam

Introduction

target

source

Related Works

Antares Autotune 8 graphical mode

Steinberg Variaudio

Related Works

- Cano et al. (ICMC, 2000)
 - Voice morphing system with source and target voice
 - Score information is used for temporal alignment

- Similar with above but using a singing synthesizer instead of the source voice (i.e. Vocaloid)
- Tune synthesizer parameter with the lyric information of the song
- However, they require additional score information!

Research Goal

Transfer musical expressions without any additional information

Temporal Alignment

Temporal Alignment – Dynamic Time Warping

Temporal Alignment – Feature Extraction

Spectrogram of Source

Spectrogram of Target

Temporal Alignment – Feature Extraction

Similarity matrix with spectrogram

Temporal Alignment – Feature Extraction

3000 2500 2000 Time [1024 Samples]

Spectrogram of Source

Spectrogram of Target

Feature Extraction Strategy

- Preserving common elements
 - Note-level melody
 - Lyrics

- Suppressing different characteristics
 - Vibrato or other pitch-related articulations
 - Singer timbre

Proposed Features

Max-filtered Constant-Q transform

- Semi-tone pitch resolution: vibrato with less than one semi-tone
- Frequency-wise max-filtering: vibrato with more than one semi-tone

Proposed Features

Phoneme score (phoneme classifier posteriorgram)

- Frame-level features for accurate temporal alignment
- Singer invariant lyrical features

Temporal Alignment – Feature Comparison

Spectrogram

Max-filtered Constant-Q Transform

Temporal Alignment – Feature Comparison

Spectrogram

phoneme score

Temporal Alignment – Feature Comparison

Spectrogram

Phoneme Score +Const-Q Trans

Savitzky, Abraham, and Marcel JE Golay. "Smoothing and differentiation of data by simplified least squares procedures." *Analytical chemistry* 36.8 (1964): 1627-1639.

Pitch Alignment

Harmonic-Percussion Source Separation (HPSS)

- Pre-processing of pitch detection to increase detection accuracy
- Median filter (IEEE Signal Processing Letters 2014)
- Pitch Detector
 - YIN
- Pitch shifting
 - Pitch-Synchronous Overlap-Add (PSOLA)
 - Formant preservation

Pitch Alignment

Dynamics Alignment

Datasets

- 4 recordings for each of 4 songs (total 16 recordings)
- One of 4 recordings is a target singing voice (professional or skilled)
- Totally 12 pairs of source-target singing voice

	Song 1	Song 2	Song 3	Song 4
Gender	female	male	male	male
No. of source	3	3	3	3
Remarks	high pitch English	low pitch English	swing rhythm Korean	swing rhythm Korean

- Song 1 Song 2 Song 4 Song 3 Gender female male male male 3 No. of source 3 3 3 Remarks swing rhythm high pitch low pitch swing rhythm English English Korean Korean
- Temporal alignment
 - Better alignment has less fluctuation of the DTW slope
 - Standard deviation of slope angle $\theta = \arctan(slope)$

Pitch alignment

	Song 1	Song 2	Song 3	Song 4
Gender	female	male	male	male
No. of source	3	3	3	3
Remarks	high pitch English	low pitch English	swing rhythm Korean	swing rhythm Korean

Dynamics alignment

	Song 1	Song 2	Song 3	Song 4
Gender	female	male	male	male
No. of source	3	3	3	3
Remarks	high pitch English	low pitch English	swing rhythm Korean	swing rhythm Korean

Audio Examples

More examples are available on https://seyong92.github.io/ICASSP2018

Summary

- Proposed a method to transfer vocal expressions from one voice to another in terms of tempo, pitch and dynamics without any additional information
- Showed the proposed method effectively transformed the source voices so that they mimic singing skills from the target voice

Future Plan

- The limitation of this work is that the target voice must be available
- A possible solution is to model a target singer model (e.g. singing synthesizer with natural expressions) and generate a target example using melody and lyrics information extracted from the source voice
- Improve the audio quality using other time-scale/pitch modification algorithms

Thank you