
PyTSMod: A Python Implementation of Time-Scale Modification Algorithms

Sangeon Yong Soonbeom Choi Juhan Nam

Graduate School of Culture Technology, KAIST, South Korea
{koragon2, cjb3549, juhan.nam}@kaist.ac.kr

ABSTRACT

Time-scale modification (TSM) is a digital audio effect
that adjusts the length of an audio signal while preserv-
ing its pitch. The TSM audio effect is widely used in not
only sound production but also music and audio research
such as for data augmentation. In this paper, we present
PyTSMod, an open-source Python library that implements
several different classical TSM algorithms. We expect that
PyTSMod can help MIR and audio researchers easily use
the TSM algorithms in the Python-based environment.

1. INTRODUCTION

TSM is a popularly used digital audio effect that adjusts the
length of audio waveforms in the time domain. The goal of
TSM is to shorten or lengthen various sound sources nat-
urally in time. There are many TSM algorithms designed
to be suited for different sound sources. For example, pitch
synchronous overlap-add (TD-PSOLA) is specialized for
monophonic speech sounds [1] and phase vocoder based
TSM [2] is more effective for preserving the phase con-
tinuity of polyphonic sounds. Despite the long-term re-
search and use of TSM algorithms, there is currently a
lack of high-quality TSM algorithm packages written in
Python, which is a mainstream programming language for
music and audio research. To address the issue, we present
PyTSMod, a Python package that implements several dif-
ferent types of TSM algorithms. The source code is avail-
able at this link 1 .

2. TSM ALGORITHMS

The PyTSMod package includes the following TSM Algo-
rithms.

2.0.1 Overlap-Add (OLA)

OLA is the simplest TSM algorithm that changes the
length of the signal through modifying the hop size be-
tween analysis and synthesis frames. This approach is most

1 https://github.com/KAIST-MACLab/PyTSMod

c© S. Yong, S. Choi, and J. Nam. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: S. Yong, S. Choi, and J. Nam, “PyTSMod: A Python Implementa-
tion of Time-Scale Modification Algorithms”, Extended Abstracts for the
Late-Breaking Demo Session of the 21st Int. Society for Music Informa-
tion Retrieval Conf., Montréal, Canada, 2020.

intuitive and has influenced other TSM algorithms, but on
the contrary, the quality is very low because it does not
consider the characteristics of the signal at all.

2.0.2 Pitch-Synchronous Overlap-Add (TD-PSOLA)

TD-PSOLA [1] is one of the algorithm that shows high
quality results based on OLA. PSOLA analyzes the orig-
inal waveforms to create pitch-synchronous analysis win-
dows and synthesize the output signals both for modify-
ing time-scale and pitch-scale. This type of modification
is effective especially for pitch shifting of human speech
because it preserves the formant of the input signal while
changing pitch [3]. However, it is quite difficult to use
PSOLA because the pitch prediction errors such as octave
error can cause abrupt glitches.

2.0.3 Waveform-Similarity Overlap-Add (WSOLA)

Another algorithm that improves the basic OLA is
WSOLA, which was proposed to solve the low signal sen-
sitivity of OLA [4]. WSOLA maximizes the waveform
similarity by allowing the analysis frame to find the most
similar position through cross correlation. This method is
effective for monophonic sources, but it cannot connect
phases of all frequency components of polyphonic sources,
causing artifacts called transient doubling or stuttering.

2.0.4 Phase Vocoder (PV)

To preserve the phase continuity for all frequency bin
components while modifying the time-scale, using phase
vocoder [2] is one of the solution. Phase vocoder esti-
mates instantaneous frequency and it is used to update
the phases of frequency components of the input signal in
short-time Fourier transform. Although TSM results with
phase vocoder has high phase continuity, it causes transient
smearing for percussive audio sources and a coloring arti-
fact called phasiness.

2.0.5 Harmonic-Percussive Source Separation (HPSS)
with Phase Vocoder

A solution to reduce the artifacts from TSM with phase
vocoder is using HPSS. Driedger and Müller proposed a
novel TSM algorithm that applies phase vocoder to only
harmonic sources and OLA to only percussive sources [5].
This can preserve both phase and transients to achieve the
high quality TSM results for polyphonic signals.



Function Main parameters Remarks
OLA audio, scale_factor* Basic overlap-add method.
WSOLA audio, scale_factor* TSM using waveform similarity.
PV audio, scale_factor* TSM using PV. Phase locking is also supported.
HP-TSM audio, scale_factor* TSM using HPSS, PV, and OLA.
TD-PSOLA audio, scale_factor(pitch), scale_factor(time), f0 f0 from external pitch tracker is needed.
* scale factor can either be a fixed value or anchor points.

Table 1. Available TSM functions and main parameters.

3. IMPLEMENTATION

We implemented PyTSMod using NumPy [6] and SciPy
[7], which are commonly used for signal processing in
Python. We also used libROSA [8] for HPSS. Most algo-
rithm functions are based on the TSM toolbox [9], preserv-
ing the same input parameters. Therefore, the input signals
and time-scale factor are required as main parameters for
OLA, WSOLA, and phase vocoder. The scale factor can
be either a fixed stretching rate alpha or an anchor point
array for non-linear TSM. The anchor points are the pair
of time position which contain the value of knee points of
input and the output signal.

In case of TD-PSOLA, frame-level pitch estimation of
the input audio is required for windowing. Since PyTSMod
does not provide pitch tracker, users should use an exter-
nal pitch estimation algorithm. TD-PSOLA also needs two
scale factors alpha and beta as a main parameter, which
represent the time stretching rate and pitch shifting rate,
respectively. They are required because both the pitch and
the length of the signal can be manipulated at the same
time. To support non-linear pitch shifting, an absolute pitch
value can be used as an input parameter instead of the fixed
pitch scale factor.

For users who want to modify and save the result eas-
ily, a command-line interface is also supported. Users can
save the result of TSM algorithm with a simple command
named tsmod. The command-line interface is supported for
all algorithms except TD-PSOLA which needs pitch esti-
mation from an external pitch tracker.

4. REFERENCES

[1] F. Charpentier and M. Stella, “Diphone synthesis us-
ing an overlap-add technique for speech waveforms
concatenation,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 11,
Tokyo, Japan, 1986, pp. 2015–2018.

[2] J. L. Flanagan and R. M. Golden, “Phase vocoder,” Bell
System Technical Journal, vol. 45, no. 9, pp. 1493–
1509, 1966.

[3] U. Zölzer, DAFX: Digital Audio Effects, 2nd ed. John
Wiley & Sons, 2011, pp. 205–209.

[4] W. Verhelst and M. Roelands, “An overlap-add tech-
nique based on waveform similarity (WSOLA) for
high quality time-scale modification of speech,” in
IEEE International Conference on Acoustics, Speech,

and Signal Processing, vol. 2, Minneapolis, USA,
1993, pp. 554–557.

[5] J. Driedger and M. Müller, “Improving time-
scale modification of music signals using harmonic-
percussive separation,” IEEE Signal Processing Let-
ters, vol. 21, no. 1, pp. 105–109, 2013.

[6] S. V. D. Walt, S. C. Colbert, and G. Varoquaux,
“The NumPy array: A structure for efficient numerical
computation,” Computing in Science & Engineering,
vol. 13, no. 2, pp. 22–30, 2011.

[7] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
land, T. Reddy, D. Cournapeau, E. Burovski, P. Pe-
terson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Lax-
alde, J. Perktold, R. Cimrman, I. Henriksen, E. A.
Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contrib-
utors, “SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python,” Nature Methods, vol. 17,
pp. 261–272, 2020.

[8] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “librosa: Audio and music
signal analysis in python,” in Proceedings of the 14th
Python in Science Conference, vol. 8, 2015, pp. 18–25.

[9] J. Driedger and M. Müller, “TSM toolbox: MAT-
LAB implementations of time-scale modification algo-
rithms,” in Proceedings of the 17th International Con-
ference on Digital Audio Effects, Erlangen, Germany,
2014.


